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Abstract

One of the main controversial items in palaeoclimatology is to elucidate if climate during
the Jurassic was warmer than present day, with no ice caps, or if ice caps were present
in some specific intervals. The Pliensbachian Cooling event (Lower Jurassic) has been
pointed out as one of the main candidates to have developed ice caps on the poles. To5

constrain the timing of this cooling event, including the palaeoclimatic evolution before
and after cooling, as well as the calculation of the seawater palaeotemperatures are
of primary importance to find arguments on this subject. For this purpose, the Rodiles
section of the Asturian Basin (Northern Spain), a well exposed succession of the up-
permost Sinemurian, Pliensbachian and Lower Toarcian deposits, has been studied.10

A total of 562 beds were measured and sampled for ammonites, for biostratigraphical
purposes and for belemnites, to determine the palaeoclimatic evolution through stable
isotope studies. Comparison of the recorded uppermost Sinemurian, Pliensbachian
and Lower Toarcian changes in seawater palaeotemperature with other European sec-
tions allows characterization of several climatic changes of probable global extent. A15

warming interval which partly coincides with a negative δ13Cbel excursion was recorded
at the Upper Sinemurian. After a “normal” temperature interval, a new warming interval
that contains a short lived positive δ13Cbel peak, was developed at the Lower-Upper
Pliensbachian transition. The Upper Pliensbachian represents an outstanding cooling
interval containing a positive δ13Cbel excursion interrupted by a small negative δ13Cbel20

peak. Finally, the Lower Toarcian represented an exceptional warming period pointed
as the main responsible for the prominent Lower Toarcian mass extinction.

1 Introduction

The idea of an equable Jurassic greenhouse climate, 5–10 ◦C warmer than present
day, with no ice caps and low pole-equator temperature gradient, has been proposed25

by several studies (i.e. Hallam, 1975, 1993; Chandler et al., 1992; Frakes et al., 1992;

4040

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/4039/2015/cpd-11-4039-2015-print.pdf
http://www.clim-past-discuss.net/11/4039/2015/cpd-11-4039-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
11, 4039–4076, 2015

Palaeoclimatic
oscillations in the

Pliensbachian

J. J. Gómez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Rees et al., 1999; Sellwood and Valdes, 2008). Nevertheless, this hypothesis has been
challenged by numerous palaeoclimatic studies, mainly based on palaeotemperature
calculations using as a proxy the oxygen isotope data from belemnite and brachio-
pod calcite. Especially relevant are the latest Pliensbachian-Early Toarcian climate
changes, which have been documented in many sections from Western Europe (i. e.5

Sælen et al., 1996; McArthur et al., 2000; Röhl et al., 2001; Schmidt-Röhl et al., 2002;
Bailey et al., 2003; Jenkyns, 2003; Rosales et al., 2004; Gómez et al., 2008; Metodiev
and Koleva-Rekalova, 2008; Suan et al., 2008, 2010; Dera et al., 2009, 2010, 2011;
Gómez and Arias, 2010; García Joral et al., 2011; Gómez and Goy, 2011; Fraguas et
al., 2012), as well as in Northern Siberia and in the Artic Region (Zakharov et al., 2006;10

Nikitenko, 2008; Suan et al., 2011). The close correlation between the severe Upper
Pliensbachian cooling and the Lower Toarcian warming events, and the major Lower
Toarcian mass extinction indicates that warming was one of the main causes of the
faunal turnover (Kemp et al., 2005; Gómez et al., 2008; Gómez and Arias, 2010; Gar-
cía Joral et al., 2011; Gómez and Goy, 2011; Fraguas et al., 2012; Clémence, 2014;15

Clémence et al., 2015; Baeza-Carratalá et al., 2015).
Comparison between the δ18O-derived palaeotemperature curves obtained from

belemnite calcite in the European sections shows a close relationship in the evolution
of seawater palaeotemperature across Europe, indicating that the Late Pliensbachian
cooling and the Early Toarcian warming intervals could probably be global in extent.20

At the Upper Pliensbachian Cooling event, palaeotemperatures of around 10 ◦C have
been calculated for the Paris Basin (Dera et al., 2009) and in the order of 12 ◦C for
Northern Spain (Gómez et al., 2008; Gómez and Goy, 2011). These temperatures are
considerably low for a palaeolatitude of Iberia of around 30–35◦N (Osete et al., 2010).
Nevertheless, except for a few sections (Rosales et al., 2004; Korte and Hesselbo,25

2011; Armendáriz et al., 2012), little data on the evolution of seawater palaeotemper-
atures during the uppermost Sinemurian and the Pliensbachian, which culminated in
the prominent Upper Pliensbachian cooling and the Lower Toarcian warming events,
have been documented.
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The objective of this paper is to provide data on the evolution of the seawater
palaeotemperatures and the changes in the carbon isotopes through the Lower Juras-
sic Upper Sinemurian, Pliensbachian and Lower Toarcian, to constrain the timing of
the recorded changes through ammonite-based chronostratigraphy and to compare
the changes in seawater palaeotemperature during the mentioned time interval with5

other sections, in order to assess whether the observed environmental changes have
a local or a global extent. The dataset has been obtained from the particularly well
exposed Rodiles section, located in the Asturias community in northern Spain (Fig. 1).

2 Materials and methods

The 110 m thick studied section composed of 562 layers, has been studied bed by bed.10

Collected ammonites were prepared and studied following the usual palaeontological
methods. The obtained biochronostratigraphy allowed characterization of the standard
chronozones and subchronozones established by Elmi et al. (1997) and Page (2003),
which are used in this work.

A total of 191 analyses of stable isotopes were performed on belemnite calcite15

samples, in order to obtain the primary Upper Sinemurian, Pliensbachian and Lower
Toarcian seawater stable isotope signal, and hence to determine palaeotemperature
changes, as well as the variation pattern of the carbon isotope in the studied time inter-
val. For the assessment of possible burial diagenetic alteration of the belemnites, pol-
ished samples and thick sections of each belemnite rostrum were prepared. The thick20

sections were studied under the petrographic and the cathodoluminescence micro-
scope, and only the non-luminescent, diagenetically unaltered portions of the belem-
nite rostra, were sampled using a microscope-mounted dental drill. Sampling of the
luminescent parts such as the apical line and the outer and inner rostrum wall, frac-
tures, stylolites and borings have been avoided. Belemnite calcite was processed in25

the stable isotope labs of the Michigan University (USA). The procedure followed in
the stable isotope analysis has been described in Gómez and Goy (2011). Isotope ra-
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tios are reported in per mil relative to the standard Peedee belemnite (PDB), having a
reproducibility better than 0.02 ‰ PDB for δ13C and better than 0.06 ‰ PDB for δ18O.

The seawater palaeotemperature recorded in the oxygen isotopes of the studied
belemnite rostra have been calculated using the Anderson and Arthur (1983) equation:
T (◦C) =16.0−4.14 (δc−δw)+0.13 (δc−δw)2 where δc = δ

18O PDB is the composition5

of the sample, and δw = δ18O SMOW the composition of ambient seawater. For a non-
glacial ocean water δw values of −1 ‰ (Shackleton and Kennet, 1975), were used. For
palaeotemperature calculation, it has been assumed that the δ18O values, and conse-
quently the resultant curve, essentially reflects changes in environmental parameters
(Sælen et al., 1996; Bettencourt and Guerra, 1999; McArthur et al., 2007; Price et al.,10

2009; Rexfort and Mutterlose, 2009; Benito and Reolid, 2012; Li et al., 2012; Harazim
et al., 2013; Ullmann et al., 2014, Ullmann and Korte, 2015), as the sampled non-
luminescent biogenic calcite of the studied belemnite rostra precipitated in equilibrium
with the seawater. It has also being assumed that the biogenic calcite retains the pri-
mary isotopic composition of the seawater and that the belemnite migration, skeletal15

growth, the sampling bias, and the vital effects are not the main factors responsible for
the obtained variations. Cross-plot of the δ18O against the δ13C values (Fig. 2) reveals
a cluster type of distribution, showing a negative correlation coefficient (−0.2) and very
low covariance (R2 =0.04), supporting the lack of digenetic overprints in the analyzed
diagenetically screened belemnite calcite.20

3 Results

In the coastal cliffs located northeast of the Villaviciosa village, in the eastern part of
the Asturias community (Northern Spain) (Fig. 1), the well exposed Upper Sinemurian,
Pliensbachian and Lower Toarcian deposits are represented by a succession of alter-
nating lime mudstone to bioclastic wackestone and marls with interbedded black shales25

belonging to the Santa Mera Member of the Rodiles Formation (Valenzuela, 1988)
(Fig. 3). The uppermost Simemurian and Pliensbachian deposits have been studied
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in the eastern part of the Rodiles Cape and the uppermost Pliensbachian and Lower
Toarcian in the western part of the Rodiles Cape (West Rodiles section of Gómez et
al., 2008; Gómez and Goy 2011). Both fragments of the section are referred here as
the Rodiles section (lat. 43◦32′22′′ long. 5◦22′22′′).

Ammonite taxa distribution and profiles of the δ18Obel and δ13Cbel values obtained5

from belemnite calcite have been plotted against the 562 measured beds of the Rodiles
section (Fig. 4).

3.1 Lithology

The Upper Sinemurian, Pliensbachian and Lower Toarcian deposits of the Rodiles sec-
tion are constituted by couplets of bioclastic lime mudstone to wackestone limestone10

and marls. Occasionally the limestones contain bioclastic packstone facies concen-
trated in rills. Limestones, generally recrystallized to microsparite, are commonly well
stratified in beds whose continuity can be followed at the outcrop scale, as well as in
outcrops several kilometres apart. However, nodular limestone layers, discontinuous
at the outcrop scale, are also present. The base of some carbonates can be slightly15

erosive, and they are commonly bioturbated, to reach the homogenization stage. Ich-
nofossils, specially Thalassinoides, Chondrites and Phymatoderma, are also present.
Marls, with CaCO3 content generally lower than 20 % (Bádenas et al., 2009, 2012), are
frequently gray coloured, occasionally light gray due to the higher proportion of carbon-
ates, with interbedded black intervals. Occasionally brown coloured sediments, more20

often in the Upper Sinemurian, are present.

3.2 Biochronostratighraphy

The ammonite-based biochronostratigraphy of these deposits in Asturias have been
carried out by Suárez-Vega (1974), and the uppermost Pliensbachian and Toarcian am-
monites by Gómez et al. (2008), and by Goy et al. (2010a, b). Preliminary biochronos-25
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tratigraphy of the Upper Sinemurian and the Pliensbachian in some sections of the
Asturian Basin has been reported by Comas-Rengifo and Goy (2010).

Collected ammonites allowed the recognition of all the standard Upper Sinemurian,
Pliensbachian and Lower Toarcian chronozones and subchronozones defined by Elmi
et al. (1997) and Page (2003) for Europe. Section is generally expanded and am-5

monites are common enough as to constrain the boundaries of the biochronostrati-
graphical units. Exceptions are the Taylori-Polymorphus subchronozones that could not
be separated, and the Capricornus-Figulinum subchronozones of the Davoei Chrono-
zone, partly due to the relatively condensed character of this chronozone. Most of the
recorded species belong to the NW Europe province but some representatives of the10

Tethysian Realm are also present.

3.3 Carbon isotopes

The carbon isotopes curve reflects several oscillations through the studied section
(Fig. 4). A positive δ13Cbel shift, showing average values of 1.6 ‰ is recorded in the Up-
per Sinemurian Densinodulum to part of the Macdonelli subchronozones. From the up-15

permost Sinemurian Aplanatum Subchronozone (Raricostatum Chronozone) up to the
Lower Pliensbachian Valdani Subchronozone of the Ibex Chronozone, average δ13Cbel
values are −0.11 ‰, delineating an about 1–1.5 ‰ relatively well marked negative ex-
cursion. In the upper Ibex and the Davoei chronozones, the δ13Cbel curve records
background values of about 1 ‰, with a positive peak at the upper part of the Ibex20

Chronozone and the lower part of the Davoei Chronozone.
In the Upper Pliensbachian the δ13Cbel values tend to outline a slightly positive ex-

cursion, interrupted by a small negative peak in the upper part of the Spinatum Chrono-
zone. The Lower Toarcian curve reflects the presence of a positive δ13Cbel trend which
develops above the here represented stratigraphical levels, up to the Middle Toarcian25

Bifrons Chronozone (Gómez et al., 2008).
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3.4 Oxygen isotopes

The δ18Obel values show the presence of several excursions through the Upper Sine-
murian to the Lower Toarcian (Fig. 4). In the Upper Sinemurian to the lowermost Pliens-
bachian interval, an about 1 ‰ negative excursion, showing values generally below
−1 ‰ with peak values up to −2.98 ‰ has been recorded in Sinemurian samples lo-5

cated immediately below the stratigraphic column represented in Fig. 4. In most of the
Lower Pliensbachian Jamesoni and the lower part of the Ibex chronozones, δ18Obel val-
ues are quite stable, around −1 ‰, but a new about 1–1.5 ‰ negative excursion, with
peak values up to −1.9 ‰, develops along most of the Lower Pliensbachian Ibex and
Davoei chronozones, extending up to the base of the Upper Pliensbachian Margarita-10

tus Chronozone. Most of the Upper Pliensbachian and the base of the Lower Toarcian
are characterized by the presence of an important change. A well-marked in the or-
der of 1.5 ‰ δ18Obel positive excursion, with frequent values around 0 ‰, and positive
values up to 0.67 ‰, were assayed in this interval. The oxygen isotopes recorded a
new change on its tendency in the Lower Toarcian, where a prominent about 1.5–2 ‰15

δ18Obel negative excursion, with values up to −3 ‰, has been verified.

4 Discussion

The isotope curves obtained in the Upper Sinemurian, Pliensbachian and Lower Toar-
cian section of the Asturian Basin has been correlated with other successions of similar
age, in order to evaluate if the recorded environmental features have a local or a possi-20

ble global extent. In order to correlate a more homogeneous dataset, only the isotopic
results obtained by other authors from belemnite calcite and exceptionally from bra-
chiopod calcite, have been used for the correlation of the stable isotopic data.
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4.1 Carbon isotope curve

The δ13Cbel carbon isotope excursions (CIEs) found in the Asturian Basin, can be
followed in other sections across Western Europe (Fig. 5). The Upper Sinemurian pos-
itive CIE has also been recorded in the Cleveland Basin of the UK by Korte and Hes-
selbo (2011) and in the δ13Corg data of the Wessex Basin of southern UK by Jenkyns5

et al. (2013).
The Lower Pliensbachian negative δ13Cbel excursion that extends from the Rari-

costatum Chronozone of the uppermost Sinemurian to the Lower Pliensbachian
Jamesoni and part of the Ibex chronozones (Fig. 5), correlates with the lower part of
the negative δ13Cbel excursion reported by Armendáriz et al. (2012) in another section10

of the Asturian Basin. Similarly, the δ13Cbel curve obtained by Quesada et al. (2005)
in the neighbouring Basque-Cantabrian Basin, show the presence of a negative CIE
in similar stratigraphical position. In the Cleveland Basin of the UK, the studies on the
Sinemurian-Pliensbachian deposits carried out by Hesselbo et al. (2000a), Jenkyns et
al. (2002) and Korte and Hesselbo (2011) reflect the presence of this Lower Pliens-15

bachian δ13Cbel negative excursion. In the Peniche section of the Lusitanian Basin of
Portugal, this negative CIE has also been recorded by Suan et al. (2010) in brachiopod
calcite, and in bulk carbonates in Italy (Woodfine et al., 2008; Francheschi et al., 2014).
The about 1.5–2 ‰ magnitude of this negative excursion seems to be quite consistent
across the different European localities.20

Korte and Hesselbo (2011) pointed out that the Lower Pliensbachian negative δ13C
excursion seems to be global in character and the result of the injection of isotopically
light carbon from some remote source, such as methane from clathrates, wetlands, or
thermal decomposition or thermal metamorphism or decomposition of older organic-
rich deposits. However none of these possibilities have been documented yet.25

Higher in the section, the δ13C values are relatively uniform, except for a thin interval,
around the Lower Pliensbachian Ibex-Davoei zonal boundary, where a small positive
peak (the Ibex-Davoei positive peak, previously mentioned by Rosales et al. (2001)
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and by Jenkyns et al., 2002) can be observed in most of the δ13C curves summarized
in Fig. 5.

The next CIE is an about 1.5–2 ‰ positive excursion, well recorded in all the cor-
related Upper Pliensbachian sections (the Upper Pliensbachian positive excursion in
Fig. 5). Around the Pliensbachian-Toarcian boundary, a negative δ13C peak is again5

recorded (Fig. 5). This narrow excursion was described by Hesselbo et al. (2007) in bulk
rock samples in Portugal, and tested by Suan et al. (2010) in the same basin and ex-
tended to the Yorkshire (UK) by Littler et al. (2011) and by Korte and Hesselbo (2011).
If this perturbation of the carbon cycle is global, as Korte and Hesselbo (2011) pointed
out, it could correspond with the negative δ13C peak recorded in the upper part of the10

Spinatum Chronozone in the Asturian Basin (this work); with the negative δ13C peak
reported by Quesada et al. (2005) in the same stratigraphical position in the Basque-
Cantabrian Basin, and the negative δ13C peak reported by van de Schootbrugge et
al. (2010) and Harazim et al. (2013) in the French Grand Causses Basin.

Finally, the Lower Toarcian is characterized by a prominent positive δ13C excursion15

that has been detected in all the here considered sections, as well as in some South
American (Al-Suwaidi et al., 2010) and Northern African (Bodin et al., 2010) sections.
The origin of this positive excursion has been interpreted by some authors as the re-
sponse of water masses to excess and rapid burial of large amounts of organic carbon
rich in 12C, which led to enrichment in 13C of the sediments (Jenkyns and Clayton,20

1997; Schouten et al., 2000). Other authors ascribe the origin of this positive excursion
to the removal from the oceans of large amounts of isotopically light carbon as organic
matter into black shales or methane hydrates, resulting from ebullition of isotopically
heavy CO2, generated by methanogenesis of organic-rich sediments (McArthur et al.,
2000).25

Although positive δ13C excursions are difficult to account for (Payne and Kump,
2007), it seems that this positive δ13C shift cannot necessarily be the consequence of
the widespread preservation of organic-rich facies under anoxic waters, as no anoxic
facies are present in the Spanish Lower Toarcian sections (Gómez and Goy, 2011).
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Modelling of the CIEs performed by Kump and Arthur (1999) shows that positive δ13C
excursions can also be due to an increase in the rate of phosphate or phosphate and
inorganic carbon delivery to the ocean, and that large positive excursions in the isotopic
composition of the ocean can also be due to an increase in the proportion of carbonate
weathering relative to organic carbon and silicate weathering. Other authors argue that5

increase of δ13C in bulk organic carbon may reflect a massive expansion of marine
archaea bacteria that do not isotopically discriminate in the type of carbon they use,
leading to positive δ13C shifts (Kidder and Worsley, 2010).

4.2 Oxygen isotope curves and seawater palaeotemperature oscillations

Seawater palaeotemperature calculation from the obtained δ18O values reveals the10

occurrence of several isotopic events corresponding with relevant climatic oscilla-
tions across the uppermost Sinemurian, the Pliensbachian and the Lower Toarcian
(Fig. 6). Some of these climatic changes could be of global extent. In terms of sea-
water palaeotemperature, five intervals can be distinguished. The lowermost interval
corresponds with a warming period developed in the Upper Sinemurian up to the low-15

ermost Pliensbachian. Most of the Lower Pliensbachian is represented by an interval of
“normal” temperature, close to the average palaeotemperatures of the studied interval.
A new warming period is recorded at the Lower-Upper Pliensbachian transition, and the
Upper Pliensbachian is represented by an important cooling interval. Finally the Lower
Toarcian coincides with a severe (super)warming interval, linked to the important Lower20

Toarcian mass extinction.
Palaeogeographical reconstruction based on comprehensive palaeomagnetic data,

carried out by Osete et al. (2010), locates the studied Rodiles section at a latitude of
about 32◦N for the Hettangian-Sinemurian interval and at a latitude of almost 40◦N (the
current latitude of Madrid) for the Toarcian-Aalenian interval. The average palaeotem-25

perature of the uppermost Sinemurian-Pliensbachian-Lower Toarcian interval, calcu-
lated from the δ18O values obtained from belemnite calcite in this work, is 15.6 ◦C.
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4.2.1 The Upper Sinemurian Warming

The lowermost isotopic event is a negative δ18O excursion that develops in the Up-
per Sinemurian Raricostatum Chronozone, up to the base of the Lower Pliensbachian
Jamesoni Chronozone. Average palaeotemperatures calculated from the δ18O belem-
nite samples collected below the part of the Upper Sinemurian Raricostatum Chrono-5

zone represented in Fig. 4 were 19.6 ◦C. This temperature increases to 21.5 ◦C in the
lower part of the Raricostatum Chronozone (Densinodulum Subchronozone), and tem-
perature progressively decreases through the uppermost Sinemurian and lowermost
Pliensbachian. In the Raricostaum Subchronozone, the average calculated tempera-
ture is 18.7 ◦C; in the Macdonnelli Subchronozone average temperature is 17.5 ◦C and10

average values of 16.7 ◦C, closer to the average temperatures, are not reached until the
uppermost Sinemurian Aplanatum Subchronozone and the lowermost Pliensbachian
Taylori-Polymorphus subchronozones. All these values delineate a warming interval
mainly developed in the Upper Sinemurian (Figs. 6, 7).

The Upper Sinemurian Warming interval is also recorded in the Cleveland Basin of15

the UK (Hesselbo et al., 2000; Korte and Hesselbo, 2011. The belemnite-based δ18O
values obtained by these authors are in the order of −1 to −3 ‰, with peak values lower
than −4 ‰. That represents a range of palaeotemperatures normally between 16 and
24 ◦C with peak values up to 29 ◦C, which are not compatible with a cooling, but with a
warming interval.20

The Upper Sinemurian warming coincides only partly with the Upper Sinemurian-
Lower Pliensbachian negative δ13C excursion, located near the stage boundary
(Fig. 5). Consequently, this warming cannot be fully interpreted as the consequence
of the release of methane from clathrates, wetlands or decomposition of older organic-
rich sediments, as interpreted by Korte and Hesselbo (2011) because only a small25

portion of both excursions are coincident.
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4.2.2 The “normal” temperature Lower Pliensbachian Jamesoni Chronozone
interval

After the Upper Sinemurian Warming, δ18O values are around −1 ‰ reflecting aver-
age palaeotemperatures of about 16 ◦C (Fig. 6). This Lower Pliensbachian interval of
“normal” temperature develops in most of the Jamesoni Chronozone and the base of5

the Ibex Chronozone. In the Taylori-Polymorphus chronozones, average temperature is
15.7 ◦C, in the Brevispina Subchronozone is 16.4 ◦C, and in the Jamesoni Subchrono-
zone 17.2 ◦C. Despite showing more variable data, this interval has also been recorded
in other sections of the Asturian Basin (Fig. 7) by Armendáriz et al. (2012), and rel-
atively uniform values are also recorded in the Basque-Cantabrian Basin of Northern10

Spain (Rosales et al., 2004) and in the Peniche section of the Portuguese Lusitanian
Basin (Suan et al., 2008, 2010). Belemnite calcite-based δ18O values published by
Korte and Hesselbo (2011) are quite noisy, oscillating between ∼1 ‰ and ∼−4.5 ‰
(Fig. 7).

4.2.3 The Lower Pliensbachian Warming interval15

Most of the Lower Pliensbachian Ibex Chronozone and the base of the Upper Pliens-
bachian are dominated by a 1 to1.5 ‰ negative δ18O excursion, representing an in-
crease in palaeotemperature, which marks a new warming interval. Average values
of 18.2 ◦C with peak values of 19.7 ◦C were reached in the Rodiles section (Fig. 6).
This increase in temperature partly co-occurs with the uppermost part of the Lower20

Pliensbachian negative δ13C excursion.
The Lower Pliensbachian Warming interval is also well marked in other sections

of Northern Spain (Fig. 7) like in the Asturian Basin (Armendáriz et al., 2012) and
the Basque-Cantabrian Basin (Rosales et al., 2004), where peak values around 25 ◦C
were reached. The increase in seawater temperature is also registered in the Southern25

France Grand Causses Basin (van de Schootbrugge et al., 2010), where temperatures
averaging around 18 ◦C have been calculated. This warming interval is not so clearly
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marked in the brachiopod calcite of the Peniche section in Portugal (Suan et al., 2008,
2010), but even very scattered δ18O values, peak palaeotemperature near 30 ◦C were
frequently reported in the Cleveland Basin (Korte and Hesselbo, 2011). In the com-
pilation performed by Dera et al. (2009, 2011), δ18O values are quite scattered, but
this Lower Pliensbachian Warming interval is also well marked, supporting a possible5

global extent for this climatic event.

4.2.4 The Upper Pliensbachian Cooling interval

One of the most important Jurassic positive δ18O excursions is recorded at the Up-
per Pliensbachian and the lowermost Toarcian in all the correlated localities (Figs. 4,
6, 7). This represents an important climate change towards cooler temperatures that10

begins at the base of the Upper Pliensbachian and extends up to the lowermost Toar-
cian Tenuicostatum Chronozone, representing an about 4 Myrs major cooling interval.
Average palaeotemperatures of 12.7 ◦C for this period in the Rodiles section have been
calculated, and peak temperatures as low as 9.5 ◦C were recorded in several samples
from the Gibbosus and the Apyrenum subchronozones (Fig. 6).15

This major cooling event has been recorded in many parts of the World. In Europe,
the onset and the end of the cooling interval seems to be synchronous at the scale
of ammonites subchronozone (Fig. 7). It starts at the Stokesi Subchronozone of the
Margaritatus Chronozone (near the base of the Upper Pliensbachian), and extends up
to the Lower Toarcian Semicelatum Subchronozone of the Tenuicostatum Chronozone.20

In addition to the Asturian Basin (Gómez et al., 2008; Gómez and Goy, 2011; this work),
it has clearly been recorded in the Basque-Cantabrian Basin (Rosales et al., 2004;
Gómez and Goy, 2011; García Joral et al., 2011) and in the Iberian Basin of Central
Spain (Gómez et al., 2008; Gómez and Arias, 2010; Gómez and Goy, 2011), in the
Cleveland Basin of the UK (McArthur et al., 2000; Korte and Hesselbo, 2011), in the25

Lusitanian Basin (Suan et al., 2008, 2010), in the French Grand Causses Basin (van
de Schootbrugge et al., 2010), and in the data compiled by Dera et al. (2009, 2011).

4052

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/4039/2015/cpd-11-4039-2015-print.pdf
http://www.clim-past-discuss.net/11/4039/2015/cpd-11-4039-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
11, 4039–4076, 2015

Palaeoclimatic
oscillations in the

Pliensbachian

J. J. Gómez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

It seems that the Late Pliensbachian represents a time interval of major cooling,
probably of global extent. This fact has conditioned that many authors point to this
period as one of the main candidates for the development of polar ice caps in the
Mesozoic (Price, 1999; Guex et al., 2001; Dera et al., 2011; Suan et al., 2011; Gómez
and Goy, 2011; Fraguas et al., 2012). This idea is based on the presence, in the Upper5

Pliensbachian deposits of different parts of the World, of: (1) glendonites; (2) exotic
pebble to boulder-size clasts; (3) the presence in some localities of a hiatus in the
Upper Pliensbachian-lowermost Toarcian; (4) the results obtained in the General Cir-
culation Models, and (5) the calculated Late Pliensbachian palaeotemperatures and
the assumed pole-to-equator temperature gradient.10

4.2.5 The presence of glendonites of Pliensbachian age

It is assumed that glendonite, a calcite pseudomorph after the metastable mineral
ikaite, grows in marine deposits under near-freezing temperatures (0–4 ◦C), at or just
below the sediment-water interface. This mineral is commonly associated with organic-
rich sediments, where methane oxidation is occurring, and is favoured by high alkalinity15

and elevated concentrations of dissolved orthophosphate (e.g. De Lurio and Frakes,
1999; Selleck et al., 2007). Based on these features, glendonites have been exten-
sively used as a robust indicator of cold water palaeotemperature in organic-rich en-
vironments during the periods of ikaite growth. Oxygen isotope data of modern ikaite
suggests that carbonate precipitation is in equilibrium with ambient seawater, but car-20

bon isotope signatures are normally very negative, up to −33.9 ‰ in the Recent deep
marine deposits of the Zaire Fan (Jansen et al., 1987) consistent with derivation of
carbonate from methane oxidation.

The presence of glendonite in deposits of Pliensbachian age has been reported
from Northern Siberia (Kaplan, 1978; Rogov and Zakharov, 2010; Devyatov, et al.,25

2010; Suan et al., 2011), and the occurrence of this pseudomorph in Pliensbachian
deposits of circum polar palaeolatitudes has been considered as a strong support for
the interpretation of near-freezing to glacial climate conditions (Price, 1999; Suan et
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al., 2011). However, Teichert and Luppold (2013) reported the presence of three hori-
zons with glendonites in Upper Pliensbachian (Margaritatus to Spinatum chronozones)
methane seeps in Germany, where belemnite and ostracod-based calculated bottom
water palaeotemperature were ca. 10 ◦C, which was well above the previously observed
near freezing range of ikaite stability. As a consequence, these authors raised the5

question if methane seeps are geochemical sites where ikaite can be formed at higher
temperatures due to methanotrophic sulphate reduction as the triggering geochemi-
cal process for ikaite formation at the sulphate-methane interface. The possibility of
ikaite formation at higher than previously expected temperatures needs experimental
confirmation, but until these data are available, the use of glendonite as unequivocal10

indicator of near-freezing palaeotemperature should be cautioned.

4.2.6 Exotic clasts rafted by ice

Exotic pebble to boulder-size clasts of Pliensbachian age, have been described in
Northern Siberia by several papers (Kaplan, 1978; Rogov and Zakharov, 2010; Devy-
atov et al., 2010; Suan et al., 2011). They are composed of limestone, marly limestone15

and basalt clasts, included in a succession of interbedded sandstone, siltstone and silty
clay. These deposits have been interpreted as ice-rafted dropstones and have been
taken as an evidence of near-freezing climatic conditions in the Artic region (Price,
1999; Suan et al., 2011).

4.2.7 Short-lived regression forced by cooling and glaciations20

The presence of a hiatus around the Pliensbachian-Toarcian boundary in some (but
not all) European, North African, South American and Siberian sections (Guex, 1973;
Guex et al., 2001, 2012; Suan et al., 2011) has been interpreted as the result of a
major short-lived regression, forced by cooling that reached near freezing to glacial
conditions, derived from increased volcanic activity (Guex et al., 2001, 2012).25
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From the here presented data, the interval of cooling development can now be pre-
cisely constrained. Low seawater temperatures started at the Upper Pliensbachian
Stokesi Subchronozone of the Margaritatus Chronozone and ended at the lowermost
Toarcian Semicelatum Subchronozone of the Tenuicostatum Chronozone, spanning
virtually along all the Upper Pliensbachian and the base of the Lower Toarcian. In5

terms of time, the duration of the cooling interval spans for about 4 Myr (Ogg, 2004;
Ogg and Hinnov, 2012). Even it cannot be fully discarded, it seems quite inconsistent
to attribute the end-Pliensbachian-lowermost Toarcian regression to the presence of
glacial conditions right at the end of the cold climatic interval. If cooling was able to
generate enough ice volume in the pole caps as to generate a generalized lowstand10

period important enough as to provoke a generalized hiatus, the amplitude of this hia-
tus would virtually affect the whole Upper Pliensbachian, whilst in reality only affects
in some places, not in all areas, to a few ammonite chronozones, and mainly of the
lowermost Toarcian.

On the other hand, no major volcanic activity responsible for the climatic change was15

recorded at the Upper Pliensbachian. The Karoo-Ferrar volcanism did not start until
the Early Toarcian (Svensen et al., 2007; Jourdan et al., 2007, 2008; Moulin et al.,
2011; Dera et al., 2011; Ogg and Hinnov, 2012; Burgess et al., 2015), and only mi-
nor Pliensbachian volcanism has been reported in the North Sea and in the Patagonia
(Dera et al., 2011) as well as in the Iberian Range of Central Spain (Cortés, 2015).20

The recorded volcanism does not seem to be important enough as to release the huge
amount of SO2 needed to change the climate of the Earth, as Guex et al. (2012) pro-
posed.

4.2.8 Late Pliensbachian palaeotemperatures and the pole-to-equator
temperature gradient25

The idea of a Jurassic latitudinal climate gradient in Eurasia significantly lower than
today, with winter temperatures in Siberia probably never falling below 0 ◦C (Frakes et
al., 1992) as well as warmer, more equable conditions compared to the present day,
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with no ice caps in the polar region (Hallam, 1975) has been the dominant opinion for
many years.

This assumption is mainly based on the supposed wide distribution of part of the
Jurassic flora, like the absence of the vascular plants of the genus Xenoxylon at high
latitudes (Philippe and Thevenard, 1996), and the distribution of fauna and of sedimen-5

tary facies (Hallam, 1975). This opinion was maintained against the incipient studies
of δ18O-based palaeotemperature that already indicated the presence of significant
climate changes during the Jurassic (Stevens and Clayton, 1971).

The presence of a marked pole-to-equator climate and particularly temperature gra-
dient during the Jurassic times has been evidenced by several studies. As an example,10

the manifest bipolarity in the distribution of certain bivalves has been documented by
Crame (1993), particularly for the Pliensbachian and Tithonian. Also Hallam (1972)
denoted an increasing diversity gradient in the Pliensbachian and Toarcian from the
Tethyan to the Boreal domains and Liu et al. (1998) reported that temperature gradi-
ents were one of the main factors for Jurassic bivalve’s provincialism. More recently,15

Damborenea et al. (2013) documented the latitudinal gradient and bipolar distribution
patterns at a regional and global scale shown by marine bivalves during the Triassic
and the Jurassic.

Provinciality among Ammonoids has been classically recognized (i.e. Dommergues
et al., 1997; Enay and Cariou, 1997; Cecca, 1999; Page, 2003, 2008; Dera et al., 2010),20

including seawater temperature as one of the major factors controlling their latitudinal
distribution. Jurassic brachiopods show also good examples of latitudinal distribution,
where temperature has been considered one of the most important factors (i.e. García
Joral et al., 2011).

The presence of pole-to-equator temperature gradient, shown by several fossil25

groups, lends support to the presence of cold or even freezing conditions at the poles
(Price, 1999). In addition, the Chandler et al. (1992) general circulation model (GCM)
simulation for the Early Jurassic, concluded that winter temperatures within the conti-
nental interiors dropped to about −32 ◦C, and seasonal range over high latitude moun-
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tains surpass 45 ◦C, similar to the current seasonality of Siberia. These conditions are
compatible with the formation of permanent or seasonal ice in the Polar Regions.

4.2.9 The Lower Toarcian warming interval

Seawater temperature started to increase at the base of the Toarcian. From an aver-
age temperature of 12.7 ◦C during the Upper Pliensbachian cooling interval, average5

temperature rose to 15 ◦C in the upper part of the lowermost Toarcian Tenuicosta-
tum Chronozone (Semicelatum Subchronozone), which represents a progressive in-
crease on seawater temperature in the order of 2–3 ◦C. Comparison of the evolution
of palaeotemperature with the evolution of the number of taxa reveals that progressive
warming coincides first with a progressive loss in the taxa of several groups (Gómez10

and Arias, 2010; Gómez and Goy, 2011; García Joral et al., 2011; Fraguas et al., 2012;
Baeza-Carratalá et al., 2015) marking the prominent Lower Toarcian extinction interval.

Seawater palaeotemperature rapidly increased around the Tenuicostatum-
Serpentinum zonal boundary, where average values of about 21 ◦C, with peak tem-
peratures of 24 ◦C were reached (Fig. 6). This important warming, which represents a15

∆T of about 8 ◦C respect to the average temperatures of the Upper Pliensbachian cool-
ing interval, coincides with the turnover of numerous groups (Gómez and Goy, 2011)
the total disappearance of the brachiopods (García Joral et al., 2011; Baeza-Carratalá
et al., 2015), the extinction of numerous species of ostracods (Gómez and Arias, 2010),
and a crisis of the nannoplankton (Fraguas, 2010; Fraguas et al., 2012; Clémence et al.,20

2015). Temperatures remain high and relatively constant through the Serpentinum and
Bifrons chronozones, and the platforms were repopulated by opportunistic immigrant
species that thrived in the warmer Mediterranean waters (Gómez and Goy, 2011).
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5 Conclusions

Several relevant climatic oscillations across the Upper Sinemurian, the Pliensbachian
and the Lower Toarcian have been documented in the Asturian Basin. Correlation of
these climatic changes with other European records points out that some of them could
be of global extent. In the Upper Sinemurian, a warm interval showing average tem-5

perature of 18.5 ◦C was recorded. The end of this warming interval coincides with the
onset of a negative δ13C excursion that develops through the uppermost Sinemurian
and part of the Lower Pliensbachian.

The Upper Sinemurian warming interval is followed by an interval of “normal” tem-
perature averaging 16 ◦C, which develops through most of the Lower Pliensbachian10

Jamesoni Chronozone and the base of the Ibex Chronozone.
The upper part of the Lower Pliensbachian is dominated by an increase in tempera-

ture, marking a new warming interval which extends to the base of the Upper Pliens-
bachian, where average temperature of 18.2 ◦C was calculated. Within this warming
interval, a positive δ13C peak occurs at the transition between the Lower Pliensbachian15

Ibex and Davoei chronozones.
One of the most important climatic changes was recorded through the Upper Pliens-

bachian. Average palaeotemperature of 12.7 ◦C for this interval in the Rodiles section
delineated an about 4 Myrs major Upper Pliensbachian cooling event that was recorded
in many parts of the World. At least in Europe, the onset and the end of this cooling20

interval is synchronous at the scale of ammonites subchronozone. The cooling interval
coincides with a δ13C slightly positive excursion, interrupted by a small negative δ13C
peak in the uppermost Pliensbachian Hawskerense Chronozone.

This prominent cooling event has been pointed as one of the main candidates for the
development of polar ice caps in the Jurassic. Even some of the exposed data need25

additional studies, like the meaning of the glendonite, and that more updated GMC
studies are required; most of the available data support the hypothesis that ice caps
were developed during the Upper Pliensbachian cooling interval.
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Causes of the exceptional Upper Pliensbachian cooling are still unknown. As for
many of the major glaciation periods recorded in the Phanerozoic, low levels of atmo-
spheric pCO2, and/or variations in oceanic currents related to the break-up of Pangea
could explain these changes in seawater (Dera et al., 2009; 2011). The presence of
relatively low pCO2 levels in the Upper Pliensbachian atmosphere is supported by the5

value of ∼900 ppm obtained from Pliensbachian araucariacean leaf fossils of south-
eastern Australia (Steinthorsdottir and Vajda, 2015). These values are much higher
than the measured Quaternary preindustrial 280 ppm CO2 (i.e. Wigley et al., 1996),
but lower than the ∼1000 ppm average estimated for the Early Jurassic. The recorded
Pliensbachian values represent the minimum values of the Jurassic and of most of the10

Mesozoic, as documented by the GEOCARB II (Berner, 1994), GEOCARB III (Berner
and Kothavala, 2001) curves, confirmed for the Lower Jurassic by Steinthorsdottir and
Vajda (2015). Causes of this lowering of atmospheric pCO2 are unknown but they
could be favoured by elevated silicate weathering rates, nutrient influx, high primary
productivity, and organic matter burial (Dromart et al., 2003).15

Seawater temperature started to increase at the base of the Toarcian, rising to
15 ◦C in the upper part of the lowermost Toarcian Tenuicostatum Chronozone (Semice-
latum Subchronozone), and palaeotemperature considerably increased around the
Tenuicostatum-Serpentinum zonal boundary, seawater, reaching average values in the
order of 21 ◦C, with peak intervals of 24 ◦C. Atmospheric CO2 concentration during the20

Lower Toarcian seems to be doubled from ∼1000 to ∼2000 ppm (i.e. Berner, 2006;
Retallack, 2009; Steinthorsdottir and Vajda, 2015), causing this important and rapid
warming that coincides with the Lower Toarcian major extinction, pointing warming as
the main cause of the faunal turnover.
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Figure 1. Location maps of the Rodiles section. (a) Sketched geological map of Spain and
Portugal showing the position of the Asturian Basin. (b) Outcrops of the Jurassic deposits
in the Asturian and the western part of the Basque-Cantabrian basins, and the position of
the Rodiles section. (c) Geological map of the Asturian Basin showing the distribution of the
different geological units and the location of the Rodiles section.
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Figure 2. Cross-plot of the δ18Obel against the δ13Cbel values obtained in the Rodiles section
showing a cluster type of distribution. All the assayed values are within the rank of normal
marine values, and the correlation coefficient between both stable isotope values is negative,
supporting the lack of digenetic overprints in the sampled belemnite calcite. δ18Obel and δ13Cbel
in PDB.
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Figure 3. Sketch of the stratigraphical succession of the uppermost Triassic and the Jurassic
deposits of the Asturian Basin. The studied interval corresponds to the lower part of the Santa
Mera Member of the Rodiles Formation. Pli.=Pliensbachian, Toar.=Toarcian, Aal.=Aalenian,
Baj.=Bajocian.
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Figure 4. Stratigraphical succession of the Upper Sinemurian, the Pliensbachian and the Lower
Toarcian deposits of the Rodiles section, showing the lithological succession, the ammonite
taxa distribution, as well as the profiles of the δ18Obel and δ13Cbel values obtained from belem-
nite calcite. δ18Obel and δ13Cbel in PDB. Chronozones abbreviations: TEN: Tenuicostatum.
Subchronozones abbreviations: RA: Raricostatum. MC: Macdonnelli. AP: Aplanatum. BR: Bre-
vispina. JA: Jamesoni. MA: Masseanum. LU: Luridum. MU: Maculatum. CA: Capricornus. FI:
Figulinum. ST: Stokesi. HA: Hawskerense. PA: Paltum. SE: Semicelatum. EL: Elegantulum. FA:
Falciferum.
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Figure 5. Correlation chart of the belemnite calcite-based δ13C sketched curves across West-
ern Europe. The lowermost isotopic event is the Upper Sinemurian positive δ13C excursion,
followed by the Lower Pliensbachian negative excursion and the Ibex-Davoei positive peak.
The Upper Pliensbachian positive δ13C excursion is bounded by a negative δ13C peak, located
around the Pliensbachian-Toarcian boundary. A significant positive δ13C excursion is recorded
in the Lower Toarcian. δ13Cbel values in PDB. Chronozones abbreviations: TEN: Tenuicostatum.
SER: Serpentinum.
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Figure 6. Curve of seawater palaeotemperatrures of the Upper Sinemurian, Pliensbachian
and Lower Toarcian, obtained from belemnite calcite in the Rodiles section of Northern Spain.
Two warming intervals corresponding to the Upper Sinemurian and the Lower Pliensbachian
are followed by an important cooling interval, developed at the Upper Pliensbachian, as
well as a superwarming event recorded in the Lower Toarcian. Chronozones abbreviations:
RAR: Raricostatum. D: Davoei. TENUICOSTA.: Tenuicostatum. Subchronozones abbrevia-
tions: DS: Densinodulum. RA: Raricostatum. MC: Macdonelli. AP: Aplanatum. BR: Bevispina.
JA: Jamesoni. VA: Valdani. LU: Luridum. CA: Capricornus. FI: Figulinum. SU: Subnodosus. PA:
Paltum. SE: Semicelatum. FA: Falciferum.
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Figure 7. Correlation chart of the belemnite calcite-based δ18O sketched curves obtained in
different areas of Western Europe. Several isotopic events along the uppermost Sinemurian,
Pliensbachian and Lower Toarcian can be recognized. The lowermost event is a negative δ18O
excursion corresponding to the Upper Sinemurian Warming. After an interval of “normal” δ18O
values developed in most of the Jamesoni Chronozone and the lowermost part of the Ibex
Chronozone, another negative δ18O excursion was developed in the Ibex, Davoei and low-
ermost Margaritatus chronozones, representing the Lower Pliensbachian Warming interval. A
main positive δ18O excursion is recorded at the Upper Pliensbachian and the lowermost Toar-
cian in all the correlated localities, representing the important Upper Pliensbachian Cooling
interval. Another prominent negative shift in the δ18O values is recorded in the Lower Toar-
cian. Values are progressively more negative in the Tenuicostatum Chronozone and suddenly
decrease around the Tenuicostatum-Serpentinum zonal boundary, delineating the Lower Toar-
cian negative δ18O excursion which represents the Lower Toarcian (super)Warming interval.
δ18Obel values in PDB.
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